Lithium Niobate optical crystals

Lithium niobate is one of the most versatile and well-developed active optical materials. The crystal finds wide application in electro-optics, acousto-optics, nonlinear optics and guided-wave optics. Fundamental properties making lithium niobate suitable for such uses include a wide transparency range, high electro-optic and nonlinear optic coefficients, very high electro-mechanical coupling coefficients, and chemical and mechanical stability.

Crystal Technology is the worlds leading producer of lithium niobate, manufacturing over 70 tons of the material each year. Over twenty-five years of experience and extensive research efforts have resulted in crystal growth and fabrication processes enabling large crystals of unequaled uniformity, both within individual crystals and from one crystal to the next.

SPECIFICATIONS

Following are typical specifications for fabricated crystals of congruent composition lithium niobate. Additional specifications or special tolerances can be quoted on request.

Size	Linear dimensions up to 100 mm
Compositional Uniformity	48.38 ±0.01 mol% Li ₂ O
Curie Temperature	1142.3 ±0.7°C
Dimension	±0.25 mm
Axes Orientation	±30 arc minutes
Optical Surface Finish	10/5 scratch/dig per MIL-O-13830A (uncoated) 20/10 scratch/dig (coated)
Wavefront Distortion	< λ /4/cm @ 633 nm
Absorption Loss	<0.15%/cm @ 1.06 µm
Anti-reflection Coating	<0.3%/surface
Clear Aperture	80% of central area

PHYSICAL AND OPTICAL PROPERTIES OF LITHIUM NIOBATE

There exists an abundance of published physical property data on lithium niobate, much of it inconsistent. The following data comprise reports of varying validity of measured properties of congruent composition material. For information on additional property data, consult the reviews referenced below.

Congruent Composition		48.38 mol% Li ₂ O			
Congruent Melting Point		1250°C (approximate)			
Curie Temperature		1142.3 ±0.7°C			
Point Group		3m			
Space Group		R3c			
Lattice Constants (hexagonal)		а _н = 5.151 Å			
		c _H = 13.866 Å			
Density		4.65 g/cm ³			
Mechanical Hardness		5 (Mohs)			
Specific Heat (@ 25°C)		0.15 cal/g/°C			
Thermal Conductivity (@ 25°	C)	10 ⁻² cal/cm•sec•°C			
Thermal Expansion (@ 25°C)		$\alpha_{a} = 15 \text{ x } 10^{-6} \text{/}^{\circ}\text{C}$			
		$\alpha_{c} = 7.5 \times 10^{-6} / ^{\circ} C$			
Optical Transmission (1cm length)		UV cutoff (1/e): 340 nm			
		IR cutoff (1/e): 4600 nm			
Dielectric Constants (@ 25°C)	•		•	-
unclamped ($v < 500$ kHz):		E ₁₁ = 85		$\mathbf{E}_{33} = 28.7$	
ciamped ($v > 10$ MHZ):		$\epsilon_{11} = 44$ $\epsilon_{33} = 27.9$.9	
Electro-optic Coefficients (pm	/V @ 633	nm)			
	r ₁₃	r ₂₂	r ₃₃	r ₅₁	rz
unclamped:	10	7	33	33	18
clamped:	9	3	31	28	19
Nonlinear Optical Coefficient	s (pm/V @	⊇ 1.06 µm	ו)		
	d ₂₂ = 3	d ₃₁ = -5	d ₃₃ = -	33	
Pyroelectric Coefficient (@ 25	°C)	-8.3 x 10) ⁻⁵ C/°C/m	2	
Piezoelectric Strain Coefficien	ts (@ 25°(C x 10 ⁻¹² (C/N)		
	d ₁₅ = 69	.2 d ₃₁ = -0.		85	
	d ₂₂ = 20	.8	d ₃₃ = 6.0)	
Elastic Stiffness Coefficients (c	onstant fie	eld @ 25°	C in 10 ¹¹ i	V/m²)	
	$C_{11} = 2.0$	030	$C_{14} = 0.0$)85	$C_{44} = 0.$

$C_{11} = 2.030$	$C_{14} = 0.085$	$C_{44} = 0.595$
$C_{12} = 0.573$	$C_{33} = 2.424$	$C_{66} = 0.728$
$C_{13} = 0.752$		

CALCULATED INDICES OF REFRACTION AT ROOM TEMPERATURE

Wavelength (um)	no	no
1150.0	2.1519	2.2225
1060.0	2.1561	2.2323
840.0	2.1719	2.2507
693.4	2.1909	2.2726
632.8	2.2028	2.2866
530.0	2.2355	2.3247
514.5	2.2422	2.3326
501.7	2.2486	2.3401
496.5	2.2514	2.3434
488.0	2.2561	2.3489
476.5	2.2627	2.3568
472.7	2.2652	2.3597
465.8	2.2699	2.3653
457.9	2.2760	2.3725
441.6	2.2887	2.3875

PARAMETERS FOR THE TEMPERATURE DEPENDENT SELLMEIER EQUATION

Parameter	n _e	n _o		
A ₁	4.582	4.9048		
A ₂	9.921 x 10 ⁴	1.1775 x 10 ⁵		
A ₃	2.109 x 10 ²	2.1802 x 10 ²		
A ₄	2.194 x 10 ⁻⁸	2.7153 x 10 ⁻⁸		
B ₁	5.2716 x 10 ⁻²	2.2314 x 10 ⁻²		
B ₂	-4.9143 x 10 ⁻⁵	-2.9671 x 10 ⁻⁵		
B ₃	2.2971 x 10 ⁻⁷	2.1429 x 10 ⁻⁸		
$n^{2} = A_{1} + \frac{A_{2} + B_{1}F}{\lambda^{2} \cdot (A_{3} + B_{2}F)^{2}} + B_{3}F \cdot A_{4}\lambda^{2}$				
F = (T - 24.5)(T + 570.5) T given in °C λ given in nm				

REVIEWS OF LITHIUM NIOBATE PROPERTY DATA

• Properties of Lithium Niobate, EMIS Data Reviews Series No. 5 (INSPEC, London, 1989).

R. S. Weis and T. K. Gaylord, "Lithium Niobate: Summary of Physical Properties and Crystal Structure," Applied Physics A 37 (1985) pp. 191-203.
A. Rauber, "Chemistry and Physics of Lithium Niobate; in Current Topics in Materials Science, vol. 1, Ed E. Kaldis (North-Holland, Amsterdam, 1978) pp. 481-601.
Landolt-Bornstein, "Numerical data and functional relationships in science and technology," New Series, vol. III/16 and III/28a.

1040 East Meadow Circle Palo Alto, California 94303 www.crystaltechnology.com Tel: (650) 856-7911 Fax: (650) 354-0173